Acta Crystallographica Section E
Structure Reports Online

ISSN 1600-5368

Gordana Pavlović, ${ }^{\text {a* Vesna }}$ Tralić-Kulenovića and Zora Popovićb ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia, and ${ }^{\mathbf{b}}$ Department of Chemistry, Laboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, Zvonimirova 8, HR-10000 Zagreb, Croatia
Correspondence e-mail: gpavlov@ttf.hr

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.048$
$w R$ factor $=0.114$
Data-to-parameter ratio $=10.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

N-Benzyl-2-methylfuran-3-thiocarboxanilide

The molecule of the title compound, $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NOS}$, is nonplanar [the dihedral angle between the least-squares planes defined by the phenyl C atoms and furan ring atoms is $\left.71.7(2)^{\circ}\right]$. The anti conformation of the amide and thio groups in the thioamide fragment is consistent with infinite $C(4)$ chain formation along the b axis via $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ intermolecular hydrogen bonds $[\mathrm{N} \cdots \mathrm{S}=3.444$ (3) \AA] between the amide group and thioamide S atom.

Comment

The crystal structure determination of the title compound, (I), is part of our investigation of aryl-substituted benzothiazole derivatives and their group 12 metal complexes (Tralić-Kulenović et al., 1993; Davidović et al., 1999; Racané et al., 2001; Popović et al., 2003). Thiofuramides are precursors in the synthesis of aryl-substituted benzothiazoles (Fišer-Jakić et al., 1980). A survey of the Cambridge Structural Database (Version 5.25 of November 2003; Allen, 2002) reveals only two thiofuramides, viz. N-(2-hydroxyethyl)-2-thiofuramide (Galešić et al., 1987) and 5-nitro- N-phenyl-2-thiofuramide (Pavlović et al., 2000), and only one 2-methyl derivative of thiofuramides (Popović et al., 2001).

(I)

The molecule of (I) is non-planar (Fig. 1). The dihedral angle between the least-squares planes defined by the phenyl C atoms and furan ring atoms is $71.7(2)^{\circ}$. The analogous dihedral angles are 26.5° in N,2-dimethyl-3-thiofuramide (Popović et al., 2001) and $46.3(1)^{\circ}\left[47.0(1)^{\circ}\right.$ for the second molecule] in 5-nitro- N-phenyl-2-thiofuramide (Pavlović et al., 2000). The planarity of the thiofuramide moiety is not preserved in (I) [the dihedral angle between planes defined by the furan ring atoms and thioamide atoms $\mathrm{N}, \mathrm{S} 1$ and C5 is $\left.19.1(2)^{\circ}\right]$. This structure contrasts with those of $5-$ nitro- N -phenyl-2-thiofuramide (Pavlović et al., 2000) and N-phenyl-2furamide (Pavlović et al., 2004), where planarity is maintained by the strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O} S(5)$ intramolecular hydrogen bonds between the amide N atom and the furan O atom.

The value of the S1-C5 bond distance [1.676 (3) \AA; Table 1] is in agreement with that found in the $X_{2}-\mathrm{C}=\mathrm{S}(X=\mathrm{C}, \mathrm{N}, \mathrm{O}$ and S) structural fragment ($1.671 \AA$; Allen et al., 1987) and with those found in N,2-dimethyl-3-thiofuramide [1.667 (3) Å; Popović et al., 2001] and N-(2-hydroxyethyl)-2-thiofuramide

Received 27 February 2004
Accepted 18 March 2004 Online 27 March 2004
[1.673 (3) Å; Galešić et al., 1987]. The corresponding bond in the structure of 5-nitro- N-phenyl-2-thiofuramide (Pavlović et al., 2000) is shorter [1.655 (2) \AA A in both symmetrically independent molecules] because of the presence of the nitro group. The thiofuramide $\mathrm{N}-\mathrm{C} 5$ bond distance [1.327 (4) A] possesses significant double-bond character $[1.335$ (3) \AA in $N, 2$-dimethyl-3-thiofuramide; 1.344 (3) and 1.348 (3) \AA in 5 -nitro- N-phenyl-2-thiofuramide; 1.317 (4) \AA in N-(2-hydroxy-ethyl)-2-thiofuramide], in contrast to the $\mathrm{N}-\mathrm{C} 6$ bond distance [1.456 (4) \AA in (I); 1.443 (3) \AA in $N, 2$-dimethyl-3-thiofuramide; 1.419 (3) and 1.422 (3) \AA in 5-nitro- N-phenyl-2-thiofuramide; 1.460 (3) \AA in N-(2-hydroxyethyl)-2-thiofuramide], which is considered as a single $\mathrm{C}-\mathrm{N}$ bond. The shorter bond distances of 1.419 (3) and 1.422 (3) \AA in 5 -nitro- N-phenyl-2thiofuramide [compared with the values in other structures) are accompanied by a significantly pronounced π-electron delocalization. The pattern of one shorter and one longer $\mathrm{O}-$ Csp ${ }^{2}$ furan bond distances found in the 5-nitro-2-furyl fragments (Allen et al., 1987) is not observed in (I) [the O-C3 and $\mathrm{O}-\mathrm{C} 4$ bonds are 1.376 (6) and 1.366 (5) \AA; similar values are found in N -(2-hydroxyethyl)-2-thiofuramide, 1.368 (4) and 1.372 (3) Å].

The molecules are connected into infinite $C(4)$ chains along the b axis (Fig. 2) by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ intermolecular hydrogen bonds between the amide group and thioamide S atom (Table 2).

Experimental

Compound (I) was prepared according to a literature procedure (Fišer-Jakić et al., 1980). Single crystals were obtained by the liquiddiffusion crystallization method with dichloromethane as solvent and n-hexane as precipitant.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NOS}$
$M_{r}=231.30$
Orthorhombic, $P_{\circ} 2_{1} 2_{1} 2_{1}$
$a=5.7601$ (11) \AA
$b=8.9620$ (19) \AA
$c=22.983(4) \AA$
$V=1186.4(4) \AA^{3}$
$Z=4$
$D_{x}=1.295 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Oxford Diffraction Xcalibur2 diffractometer with Sapphire 2
CCD detector
φ and ω scans
Absorption correction: none
19193 measured reflections
1501 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.114$
$S=1.10$
1501 reflections
150 parameters
H atoms treated by a mixture of independent and constrained refinement

Mo $K \alpha$ radiation
Cell parameters from 4482 reflections
$\theta=10.0-30.0^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=296$ (2) K
Prism, colourless
$0.51 \times 0.49 \times 0.33 \mathrm{~mm}$

1414 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.074$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-7 \rightarrow 7$
$k=-11 \rightarrow 11$
$l=-29 \rightarrow 29$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.047 P)^{2}\right. \\
& \quad+0.5024 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.19 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
The molecular structure of (I), with the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2
PLATON view of the crystal structure of (I), showing infinite $C(4)$ chains extending along the b axis. Hydrogen bonds are indicated by dashed lines.

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

S1-C5	$1.676(3)$	$\mathrm{C} 1-\mathrm{C} 4$	$1.370(5)$
N-C5	$1.327(4)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.438(5)$
$\mathrm{N}-\mathrm{C} 6$	$1.456(4)$	$\mathrm{C} 1-\mathrm{C} 5$	$1.470(4)$
$\mathrm{O}-\mathrm{C} 4$	$1.366(5)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.331(5)$
$\mathrm{O}-\mathrm{C} 3$	$1.376(6)$		
$\mathrm{C} 5-\mathrm{N}-\mathrm{C} 6$	$124.6(3)$	$\mathrm{C} 4-\mathrm{O}-\mathrm{C} 3$	$107.4(3)$

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N}-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{~S} 1^{\mathrm{i}}$	$0.85(5)$	$2.71(5)$	$3.444(3)$	$145(4)$
Symmetry code: (i) $1-x, \frac{1}{2}+y,-\frac{1}{2}-z$.				

The absolute configuration of (I) could not be determined reliably. The Flack (1983) parameter is unreliable [-0.21 (12)] since the compound is a weak anomalous scatterer, especially considering the use of Mo K_{α} radiation at ambient temperature. The number of collected Friedel pairs was 1049 (41% of the total unique reflections). At the final stage of refinement, all equivalents, including Friedel opposites, were averaged. H atoms bonded to phenyl, furan, methyl and methylene C atoms were introduced at calculated positions and treated as riding $\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})\right.$ for methyl groups and $1.2 U_{\text {eq }}(\mathrm{C})$ for other atoms, and $\mathrm{C}-\mathrm{H}=0.93,0.96$ and $\left.0.97 \AA\right]$. The H atom on the amide N atom was found in a difference Fourier elec-tron-density map and refined freely.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON98 for Windows (Spek, 1998); software used to prepare material for publication: SHELXL97.

This research was supported by the Ministry of Science and Technology of the Republic of Croatia (grant No. 0119633 and 0125005).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Kennard, O., Watson, D. G., Brammer L. \& Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Davidović, N., Matković-Čalogović, D., Popović, Z. \& Fišer-Jakić, L. (1999). Acta Cryst. C55, 119-120.
Fišer-Jakić, L., Karaman, B. \& Jakopčić, K. (1980). Croat. Chim. Acta, 53, 6979.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Galešić, N., Vlahov, A. \& Galešić, M. (1987). Acta Cryst. C43, 479-482.
Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Version 1.170. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Pavlović, G., Mance, A.-D. \& Jakopčić, K. (2000). Acta Cryst. C56, 604-606.
Pavlović, G., Tralić-Kulenović, V. \& Popović, Z. (2004). Acta Cryst. E60, o631o633.
Popović, J., Mrvoš-Sermek, D. \& Tralić-Kulenović, V. (2001). Acta Cryst. E57, o893-o894.
Popović, Z., Pavlović, G., Tralić-Kulenović, V. \& Racané, L. (2003). Acta Cryst. C59, m4-m6.
Racané, L., Tralić-Kulenović, V., Fišer-Jakić, L., Boykin, D. W. \& KarminskiZamola, G. (2001). Heterocycles, 55, 2085-2098.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.
Spek, A. L. (1998). PLATON98 for Windows. University of Utrecht, The Netherlands.
Tralić-Kulenović, V., Fišer-Jakić, L. \& Lazarević, Z. (1993). Spectrosc. Lett. 26, 1771-1784.

